212 research outputs found

    The repertoire and features of human platelet microRNAs

    Get PDF
    Playing a central role in the maintenance of hemostasis as well as in thrombotic disorders, platelets contain a relatively diverse messenger RNA (mRNA) transcriptome as well as functional mRNA-regulatory microRNAs, suggesting that platelet mRNAs may be regulated by microRNAs. Here, we elucidated the complete repertoire and features of human platelet microRNAs by high-throughput sequencing. More than 492 different mature microRNAs were detected in human platelets, whereas the list of known human microRNAs was expanded further by the discovery of 40 novel microRNA sequences. As in nucleated cells, platelet microRNAs bear signs of post-transcriptional modifications, mainly terminal adenylation and uridylation. In vitro enzymatic assays demonstrated the ability of human platelets to uridylate microRNAs, which correlated with the presence of the uridyltransferase enzyme TUT4. We also detected numerous microRNA isoforms (isomiRs) resulting from imprecise Drosha and/or Dicer processing, in some cases more frequently than the reference microRNA sequence, including 5′ shifted isomiRs with redirected mRNA targeting abilities. This study unveils the existence of a relatively diverse and complex microRNA repertoire in human platelets, and represents a mandatory step towards elucidating the intraplatelet and extraplatelet role, function and importance of platelet microRNAs

    Pash 3.0: A versatile software package for read mapping and integrative analysis of genomic and epigenomic variation using massively parallel DNA sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Massively parallel sequencing readouts of epigenomic assays are enabling integrative genome-wide analyses of genomic and epigenomic variation. Pash 3.0 performs sequence comparison and read mapping and can be employed as a module within diverse configurable analysis pipelines, including ChIP-Seq and methylome mapping by whole-genome bisulfite sequencing.</p> <p>Results</p> <p>Pash 3.0 generally matches the accuracy and speed of niche programs for fast mapping of short reads, and exceeds their performance on longer reads generated by a new generation of massively parallel sequencing technologies. By exploiting longer read lengths, Pash 3.0 maps reads onto the large fraction of genomic DNA that contains repetitive elements and polymorphic sites, including indel polymorphisms.</p> <p>Conclusions</p> <p>We demonstrate the versatility of Pash 3.0 by analyzing the interaction between CpG methylation, CpG SNPs, and imprinting based on publicly available whole-genome shotgun bisulfite sequencing data. Pash 3.0 makes use of gapped k-mer alignment, a non-seed based comparison method, which is implemented using multi-positional hash tables. This allows Pash 3.0 to run on diverse hardware platforms, including individual computers with standard RAM capacity, multi-core hardware architectures and large clusters.</p

    Plasma Urea Cycle Metabolites May Be Useful Biomarkers in Children With Eosinophilic Esophagitis

    Get PDF
    Background: Eosinophilic esophagitis (EoE) is a disorder of the esophagus that has become increasingly recognized in children. Because these children undergo multiple endoscopies, discovering a non-invasive biomarker of disease activity is highly desirable. The aim of this study was to use targeted plasma metabolomics to identify potential biomarker candidates for EoE in a discovery phase.Methods: A prospective, single-center clinical trial was performed on 24 children ages 2–18 years with and without EoE undergoing upper endoscopy for any indication. Blood samples were collected for metabolomics profiling using the subclasses: amino acids, tricarboxylic acid cycle, acetylation, and methylation. Using mass spectrometry and systematic bioinformatics analysis, 48 metabolites were measured and compared between children with active EoE (+EoE) and controls (–EoE). To investigate the effect of proton pump inhibitor (PPI) use on metabolites, patients were also stratified based on PPI use (+PPI, –PPI).Results: Seven children had active EoE at the time of endoscopy. Eleven children were on PPI (4 with EoE). Of the 48 metabolites measured, 8 plasma metabolites showed statistically significant differences (p &lt; 0.05) comparing +EoE –PPI to –EoE –PPI, a few of which were upregulated metabolites involved in the urea cycle. There were 14 significant differences comparing +EoE +PPI to +EoE –PPI. This demonstrated that in EoE patients, PPI use upregulated metabolites involved in the urea cycle, while it downregulated metabolites involved in methylation. Comparison among all four groups, +EoE +PPI, +EoE –PPI, –EoE +PPI, and –EoE –PPI, revealed 27 significantly different metabolites. +EoE +PPI had downregulated methionine and N-acetyl methionine, while both +EoE groups and –EoE +PPI had upregulated homocysteine, N-acetylputrescine, N-acetylornithine, arginine, and ornithine.Conclusion: The present study revealed key plasma metabolite differences in children with EoE compared to unaffected controls. Notable candidate biomarkers include dimethylarginine, putrescine, and N-acetylputrescine. PPI use was shown to influence these urea cycle metabolites, regardless of EoE presence. Therefore, future studies should distinguish patients based on PPI use or determine metabolites while not on treatment. These findings will be confirmed in a larger validation phase, as this may represent a significant discovery in the search for a non-invasive biomarker for EoE.Clinical Trial Registration: This clinical trial was registered with ClinicalTrials.gov, identifier: NCT 03107819

    BET bromodomain inhibition attenuates cardiac phenotype in myocyte-specific lamin A/C-deficient mice

    Get PDF
    Mutation in the LMNA gene, encoding lamin A/C, causes a diverse group of diseases called laminopathies. Cardiac involvement is the major cause of death and manifests as dilated cardiomyopathy, heart failure, arrhythmias, and sudden death. There is no specific therapy for LMNA-associated cardiomyopathy. We report that deletion of Lmna in cardiomyocytes in mice leads to severe cardiac dysfunction, conduction defect, ventricular arrhythmias, fibrosis, apoptosis, and premature death within 4 weeks. The phenotype is similar to LMNA-associated cardiomyopathy in humans. RNA sequencing, performed before the onset of cardiac dysfunction, led to identification of 2338 differentially expressed genes (DEGs) in Lmna-deleted cardiomyocytes. DEGs predicted activation of bromodomain-containing protein 4 (BRD4), a regulator of chromatin-associated proteins and transcription factors, which was confirmed by complementary approaches, including chromatin immunoprecipitation sequencing. Daily injection of JQ1, a specific BET bromodomain inhibitor, partially reversed the DEGs, including those encoding secretome; improved cardiac function; abrogated cardiac arrhythmias, fibrosis, and apoptosis; and prolonged the median survival time 2-fold in the myocyte-specific Lmna-deleted mice. The findings highlight the important role of LMNA in cardiomyocytes and identify BET bromodomain inhibition as a potential therapeutic target in LMNA-associated cardiomyopathy, for which there is no specific effective therapy

    Nuclear S-nitrosylation impacts tissue regeneration in zebrafish

    Get PDF
    The role of the post-translational modifications in tissue regeneration is still not clearly understood. Here, the authors show that many nuclear proteins change S-nitrosylation state in the regenerating zebrafish tailfin, highlighting the importance of Kdm1a S-nitrosylation in the repair process

    Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif

    Get PDF
    MicroRNAs modulate tumorigenesis through suppression of specific genes. As many tumour types rely on overlapping oncogenic pathways, a core set of microRNAs may exist, which consistently drives or suppresses tumorigenesis in many cancer types. Here we integrate The Cancer Genome Atlas (TCGA) pan-cancer data set with a microRNA target atlas composed of publicly available Argonaute Crosslinking Immunoprecipitation (AGO-CLIP) data to identify pan-tumour microRNA drivers of cancer. Through this analysis, we show a pan-cancer, coregulated oncogenic microRNA ‘superfamily’ consisting of the miR-17, miR-19, miR-130, miR-93, miR-18, miR-455 and miR-210 seed families, which cotargets critical tumour suppressors via a central GUGC core motif. We subsequently define mutations in microRNA target sites using the AGO-CLIP microRNA target atlas and TCGA exome-sequencing data. These combined analyses identify pan-cancer oncogenic cotargeting of the phosphoinositide 3-kinase, TGFβ and p53 pathways by the miR-17-19-130 superfamily members

    GASZ Is Essential for Male Meiosis and Suppression of Retrotransposon Expression in the Male Germline

    Get PDF
    Nuage are amorphous ultrastructural granules in the cytoplasm of male germ cells as divergent as Drosophila, Xenopus, and Homo sapiens. Most nuage are cytoplasmic ribonucleoprotein structures implicated in diverse RNA metabolism including the regulation of PIWI-interacting RNA (piRNA) synthesis by the PIWI family (i.e., MILI, MIWI2, and MIWI). MILI is prominent in embryonic and early post-natal germ cells in nuage also called germinal granules that are often associated with mitochondria and called intermitochondrial cement. We find that GASZ (Germ cell protein with Ankyrin repeats, Sterile alpha motif, and leucine Zipper) co-localizes with MILI in intermitochondrial cement. Knockout of Gasz in mice results in a dramatic downregulation of MILI, and phenocopies the zygotene–pachytene spermatocyte block and male sterility defect observed in MILI null mice. In Gasz null testes, we observe increased hypomethylation and expression of retrotransposons similar to MILI null testes. We also find global shifts in the small RNAome, including down-regulation of repeat-associated, known, and novel piRNAs. These studies provide the first evidence for an essential structural role for GASZ in male fertility and epigenetic and post-transcriptional silencing of retrotransposons by stabilizing MILI in nuage

    Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets

    Get PDF
    Robertson, M.J., Kent, K., Tharp, N. et al. Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets. BMC Biol 18, 103 (2020). https://doi.org/10.1186/s12915-020-00826-

    ReadDepth: A Parallel R Package for Detecting Copy Number Alterations from Short Sequencing Reads

    Get PDF
    Copy number alterations are important contributors to many genetic diseases, including cancer. We present the readDepth package for R, which can detect these aberrations by measuring the depth of coverage obtained by massively parallel sequencing of the genome. In addition to achieving higher accuracy than existing packages, our tool runs much faster by utilizing multi-core architectures to parallelize the processing of these large data sets. In contrast to other published methods, readDepth does not require the sequencing of a reference sample, and uses a robust statistical model that accounts for overdispersed data. It includes a method for effectively increasing the resolution obtained from low-coverage experiments by utilizing breakpoint information from paired end sequencing to do positional refinement. We also demonstrate a method for inferring copy number using reads generated by whole-genome bisulfite sequencing, thus enabling integrative study of epigenomic and copy number alterations. Finally, we apply this tool to two genomes, showing that it performs well on genomes sequenced to both low and high coverage. The readDepth package runs on Linux and MacOSX, is released under the Apache 2.0 license, and is available at http://code.google.com/p/readdepth/
    • …
    corecore